

Case Study Details

- Country: Spain
- Soil Threat: Contamination
- Partners: Evenor-Tech (Partner 9)

Research progress in remediating soil contamination in the Guadiamar Green Corridor (Spain) event event for soil tech www.recare-hub.eu/guadiamar solutions for soil tech Anaya-Romero, M & Pérez-Alvarez, JM

Background

- Mine spill accident in 1998 contaminating Guadiamar river basin
- Applied remediation measures (mechanical, soil amendments, phytoremediation)
- No harmonized soil database and spatial analysis for Green Corridor available

WP 2. Review report

Contribution to the review reports on soil contamination (Anaya-Romero et al. 2015) and on soil function and ecosystem services (Schwilch et al. 2015).

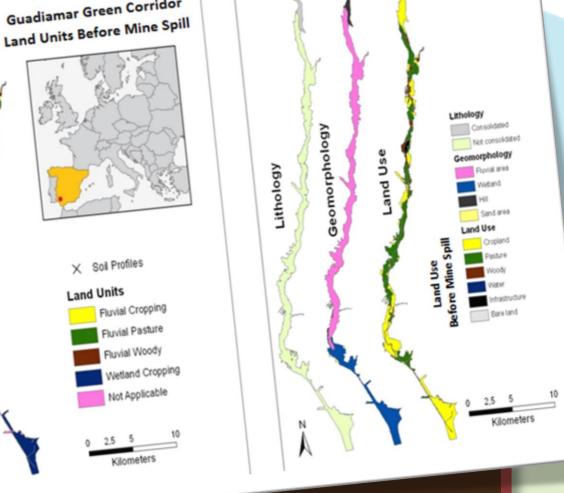
WP 3. State of degradation and conservation of the Guadiamar site

Contribution to the Report of Case Study descriptions (Tsanis et al. 2015). Database Compilation:

 Collecting existing physiochemical soil and land use data of Guadiamar between 1999 and 2002. *Red de información ambiental de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía

Guadiamar dat	abase structu	ire		
Description	Unit	Label		
PROFILE_ID	-	Profile identification		Guadiamar Green Co
SAMPLE_ID	-	Sample identification code		
LOG COOD Y			Carridot	

- Limiting case study to the Guadiamar Green Corridor
- Creating new Guadiamar database (JRC guidelines) | 18 sampling areas with physiochemical and contamination soil data of topsoil | 872 soil profiles with Cd, Pb, Cu, and Zn contamination of topsoil


Statistical analysis

- Topsoil (0 -15 cm) of the 18 sampling areas
- Thee sample size are different due to irregular number of analysis made

Spatial analysis using ArcGIS

Land units for soil data extrapolation. Soil properties of 18 sampling areas Contamination data of 872 soil profiles

LOC_COOK_X		Local coordinates × or foligitude
LOC_COOR_Y	-	Local coordinates Y or latitude
YEAR	-	Year of sampling
MONTH	-	Month of sampling [1,12]
SAMPLE_DEP_TOP	cm	Sample depth top
SAMPLE_DEP_BOT	cm	Sample depth bottom
HUMIDITY	%	Humidity
SOC	g100g1	Soil organic carbon content
BD	g/cm ³	Bulk density
HUMIDITY_ATM	%	Humidity at 1/3 atmospheric pressure
PH_H2O	-	pH in soil-water suspension
PH_KCL	-	pH in soil-KCL suspension
AMMONIUM	mgN-NH4/g	Amount of ammonium
NITRATE	mgN-NO2/g	Amount of nitrate
P_INORG_AVAILABLE	mgP/gDM	Available inorganic phosphate
P_ORG_AVAILABLE	mg P/g DM	Available organic phosphate
SAND	%	Sand content
CLAY	%	Clay content
SILT	%	Silt content
COARSE	>2 mm	Coarse fragments
CADMIUM	mg/kg ¹	Cadmium content DTPA extracted
LEAD	mg/kg ⁻¹	Lead content DTPA extracted
COPPER	mg/kg ¹	Copper content DTPA extracted
ZINC	mg/kg ¹	Zinc content DTPA extracted
TREATMENT	-	Application of amendment [0,3]
CLAY_AMENDMENT	t/ha	Amount of clayey red soil applied between 1999 and 200
ORGANIC_AMENDMENT_1	t/ha	Amount of compost applied in 1999
ORGANIC_AMENDMENT_2	t/ha	Amount of dung applied in 1999
LIME_AMENDMENT_1	t/ha	Amount of sugar lime applied in 1999
LIME_AMENDMENT_1	t/ha	Amount of sugar lime applied in 2001

WP 4-5. Stakeholder analysis

and Workshop

- Contribution to the Report on Stakeholder Analysis (Leventon 2014).
- Report on the First Stakeholder Workshop (Navarro-Fernández et al. 2015).
- Actually integrating the main technologies/approaches identified into the WOCAT questionnaires which are: sludge removal, addition of soil amendments, revegetation (with native species), environmental

WP 11. Dissemination and Communication

Anaya-Romero M, Marañón T, Cabrera F, Madejón E, Madejón P, Murillo JM, Vrinceanu N-O, Siebielec G, Geissen V (2015). Chapter 8. Soil contamination. In: J Stolte (Ed.). Soil threats and Soil functions in Europe: A Review Report (under review).

- Anaya-Romero M, Zingg F, Pérez-Álvarez JM, Madejón P,
 Abd-Elmabod SK. Developing an integration tool for
 soil contamination assessment. European
 Geosciences Union General Assembly, EGU2015.
 Geophysical Research Abstracts.
- Anaya-Romero M, Abd-Elmabod SK, Muñoz-Rojas M, Castellano G, Ceacero CJ, Alvarez S, Méndez M, De la Rosa D. 2015. Soil threats under climate change scenarios in the Andalusia region. Southern Spain.
 Land Degradation & Development.

Recare-hub

customizaton:

hub.eu/guadia

www.recare-

Shared information on social networks and **local press**

education, and building a network of information about the site.

The RECARE project is being coordinated by Wageningen University and ALTERRA – Wageningen-UR

Contact address: Wageningen University, Soil Physics and Land Management Group/ALTERRA, Soil Science Centre/ Coen Ritsema,

P.O. Box 47 • 6700 AA Wageningen, The Netherlands. T: +31 317 48 65 17 • F: +31 317 41 90 00 • E-mail: Coen.Ritsema@wur.nl • www.recare-project.eu

DOI: 10.1002/ldr.2363.

Leventon J (2014). *Stakeholder and Institutional Analysis* (Deliverable 4.1). Chapter 3.15. Case Study 15: Soil contamination in Guadiamar, Spain (pp. 89-92).

- Navarro-Fernández CM, Madejón E, Madejón P, Domínguez MT, Anaya-Romero M, Marañón T (2015). Report of the First stakeholder workshop: Participatory identification of measures to combat soil threat in Europe, Aznalcázar (Sevilla), 19 February 20
- Zingg F (2014). Evaluate Long-Term Fate of Metal Contamination after Mine Spill; Assessing Contaminant Changes in Soil The Guadiamar Case Study; Southern Spain. MSc Thesis. International Land and Water Management. Wageningen University

The RECARE project is funded by the European Commission FP7 Programme, ENV.2013.6.2-4 'Sustainable land care in Europe'. EU grant agreement: 603498. Project officer Maria Yeroyanni.

RECARE website: www.recare-project.eu RECARE Information Hub: www.recare-hub.eu Twitter@RECARE_EU

vimeo.com/channels/RECARE

facebook.com/groups/RECARE/

RECARE Preventing and Remediating

through Land Care

degradation of soils in Europe

mar

disclaimer